TADS 2004 The Power of Evidence Informing the Future

Sound-field systems for education access

Dr Robyn Massie National Acoustic Laboratories Brisbane 2004

Typical classroom listening environment

Barriers to speech perception in the classroom

Hearing status:

Normal

Minimal

Mild

Moderate

Severe

Sev/profound Profound

<15dB 16dB - 25dB 26dB - 40dB 41dB - 55dB 56dB - 70dB 70dB - 90dB >90dB

Barriers to speech perception in the classroom

Australian Hearing statistics May 2004: 15,222 aided children under 21 years

< 30 dB HL	37 %)	_ 7/0/
31 - 60 dB HL	37 %)	= /4/0

61 - 90 dB HL12 %> 90 dB HL11 %unspecified3 %

Barriers to speech perception in the classroom

Children listen differently from adults

Auditory neurological network not developed until 15 years of age (Chermak & Musiek, 2000)

Children do not have data banks of information (Flexer, 2002)

Young listeners perform poorly in noise compared with adults (Nelson & Soli, 2000)

Ability to listen in noise not developed until adolescence (Stelmachowicz et al. 2000)

What does this mean?

Children need a quieter environment and a louder signal than adults in order to learn (Anderson, 2001)

Is this what sound-field amplification sets out to achieve?

and the second	and the second

- Educational tool controls classroom
- acoustic environment
- **Public address system**
- **Consists of**
- transmitter microphone/s
- receiver/amplifier
- speakers

Signal - to - noise ratio (S/N)

Speech level 6dB louder than noise+6 dBNoise level 6dB louder than speech- 6 dBRecommended (ASHA, 1995)+15 dBChildren with sensorineural loss requiregreater S/N ratio

Increases overall level of the teacher's speech

Improves S/N ratio by 8dB to 10 dB Delivers a constant level of voice no matter where teacher is in room and when teacher's back is turned

Another question

Can sound - field systems and personal amplification systems be used in the same classroom?

Using sound-field systems and individual amplification systems at the same time creates the best listening and learning environment possible (Flexer 2002)

Sound-field amplification improves acoustic access for all children

 Individual FM systems provides individual child wearing hearing aids with most favourable S/N ratio

(Flexer 2002)

Who Benefits?

Children with:

fluctuating middle ear hearing impairment unilateral hearing impairment "minimal" permanent hearing impairment where hearing aids not recommended

Who Benefits?

Children with:

permanent hearing impairment who wear hearing aids and FM systems

"at risk" populations

e.g. non-native English auditory processing attention deficits learning problems

What are the benefits?

Contributes to academic achievement Improves: speech perception comprehension reading/spelling ability attention on-task behaviours psychosocial function e.g. confidence

(Crandell & Smaldino, 2000)

Other benefits.....

cost effective procedure for improving classroom acoustics can enhance other equipment does not stigmatise individual children does not require co-operation from child equipment malfunction obvious

Benefits to teachers

reduced vocal strain and fatigue increased ease of teaching increased versatility of instructional techniques increased teacher mobility (Rosenberg et al, 1999)

Potential limitations

appropriate teacher training and follow-up support vital loudspeaker arrangement important not a substitute for personal amplification most cannot be transported from room to room

Study with Aboriginal children

Subjects: 64 children Mean HL = 20dBincreased verbal communication increased response to teacher instruction to class children more proactive in discussion decrease in disruptive behaviours teachers reported less voice fatigue

Study in mainstream crosscultural classrooms

AIM

Investigate the effects of sound-field amplification on educational outcomes

Mainstream cross-cultural study

Subjects: 43% Vietnamese,Samoan, (n=242) Spanish, Aboriginal 18% other ethnic backgrounds 39% English backgrounds

No prior experience with technology Dual-channel systems installed

Massie and Dillon NAL

Year 2 Diagnostic Net

 Identifies children needing support
Teachers monitor progress using indicators of literacy and numeracy

Audiological and acoustic findings

Mean hearing level		15dB HL
<u>Mean</u>	<u>Actual</u>	<u>Recommended</u>
Noise	68dB	35dB
Reverberation	1.5sec.	0.6sec.
S/N ratio "off"	- 3 dB	+ 15dB
S/N ratio "on"	+4 dB	+15 dB

Did intervention affect outcomes? Were some skills affected more than others? Did family language affect outcomes? Effects of single vs dual channel options?

Classes 1-8: Systems "on"/"off"

Classes 1-8: Family Language

Beneficial effects for each subgroup

Classes 9-12 Single vs dualchannel transmission

ONE-CHANNEL FIRST DUAL-CHANNEL FIRST

Implication of findings

Importance of early foundation in literacy and numeracy skills Intervention had similar effect to increasing each semester by one third Number of microphones did not affect outcomes

Implication of findings

Vital role of teachers: training and ongoing support

Limitation: individual not group training

Greater emphasis on microphone strategies

The future

www.nal.gov.au

robyn.massie@hearing.com.au

